

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Noduliprevenone, a Novel Heterodimeric Chromanone with Cancer Chemopreventive Potential

Alexander Pontius, Anja Krick, Stefan Kehraus, Silke E. Foegen, Michael Müller, Karin Klimo, Clarissa Gerhäuser, and Gabriele M. König *

[a] Institute for Pharmaceutical Biology
University of Bonn
Nussallee 6, 53115 Bonn (Germany)
Fax: (+49) 228-73-3250
E-mail: g.koenig@uni-bonn.de

[b] Institute of Pharmaceutical Sciences Albert-Ludwigs-University Freiburg Albertstraße 25, 79104 Freiburg (Germany)

[c] Department of Toxicology and Cancer Risk Factors

DKFZ-German Cancer Research Center

Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany)

1

Table of Contents

1. NMR spectral data of compound 1	2
2. General Experimental	
3. Important ¹ H- ¹ H-COSY and ¹ H- ¹³ C long range (HMBC) correlations of compound 1	4
4. CD spectra of compound 1 and the reference (M)-orsellinic acid camphanate (2) in MeCN with sector rule for the ${}^{1}L_{b}$ -Cotton effect (drawn through the ring carbons) ${}^{[10,11]}$ for the benzene chromophores	or 5
5. Selective gradient NOEs (purple arrows) depicted in autonomous 3D models (Cerius2) of both monomeric sub-units disconnected at the biphenyl axis (brownish bond)	
6. Selective gradient NOEs (arrows) between the two sub-units of 1	6
7. Deduction of the absolute configuration at C-5 using modified Mosher's method with ? d ^{RS} -values of MPA esters of compound 1	
8. Proposed biosynthesis for compound 1	8
9. Structures of fungal metabolites related to 1	9
10. NMR spectra (¹ H, ¹³ C, ¹ H- ¹ H COSY, ¹ H- ¹³ C HMBC, ¹ H- ¹ H NOESY) of compound 1	.11
11. ¹ H NMR spectral data for sub-unit II of (<i>R</i>) and (<i>S</i>)-MPA products of 1 with calculated ? d ^{RS} values	.13

Table S1: NMR spectral data for compound 1.

no. ^a	d ¹³ C (mult.) ^b	$d^{1}H (J \text{ in Hz})^{b}$	COSY ^{b,d}	HMBC ^{b,e}	NOESY ^{b,d}	sel. NOE ^{c,d}
						_
1′	161.7 (C)					
2´	111.0 (CH)	6.49 (s)	11′	1´, 4´, 4a´, 9´, 9a´, 11´	OH-1´, 11´	OH-1´, 11´
3′	151.6 (C)					
4′	115.0 (C)					
4a´	157.8 (C)					
5´	81.4 (CH)	4.89 (br t, 5.5)	6´	4a´, 6´, 7´, 8´, 8a´, 10a´	6΄, 8a΄α	6΄, 8a΄α
6′	22.4 (CH ₂)	2.37 (m)	5΄, 7΄α, 7΄β	5´, 7´, 8´, 10a´	5′	5΄, 7΄α, 7΄β, 8a΄β
7′	26.9 (CH ₂)	2.13 (Hβ m)	6΄, 7΄α	5′, 6′, 8′		6΄, 7΄α
		1.85 (Hα t, 9.9)	6΄, 7΄β	5′, 6′, 8′	OH-1	OH-1, 7΄β
8′	176.0 (C)					
8a´	40.0 (CH ₂)	3.37 (Hβ d, 17.2)	8a′α	5´, 9´, 9a´, 10a´, 12´		8a´α
		2.97 (Hα d, 17.2)	8a′β	5´, 9´, 9a´, 10a´, 12´	5′	5΄, 8a΄β
9´	195.4 (C)					
9a´	106.7 (C)					
10a´	86.2 (C)					
11´	20.8 (CH ₃)	1.96 (s)	2′	2´, 3´, 4´, 4a´, 9a´	2´, OH-1	2′, 11
12´	169.8 (C)					
13´	53.5 (CH ₃)	3.70 (s)		12′	11	11, 8a΄α

OH-1′		11.47 (s)		1′, 2′, 3′, 9′, 9a′	2′	2′
1	159.5 (C)					
2	116.6 (C)					
3	151.6 (C)					
4	109.8 (CH)	6.43 (s)	11	1, 2, 9, 9a, 11	11	11
4a	159.8 (C)					
5	73.7 (CH)	4.14 (br d, 10.6)	OH-5, 6	6, 7, 8a, 10a	6, 7, 8aα, 8aβ	6, 7, 8aα, 13
6	26.7 (CH ₂)	1.73 (m)	5, 7	5, 7, 8	5	5
7	30.9 (CH ₂)	2.54 (m)	6	5, 6, 8	5	5
8	173.8 (C)					
8a	37.9 (CH ₂)	$3.33 \ (H\alpha \ d, 17.2)$	8aβ	5, 9, 9a, 10a, 12	5	8aβ
		3.04 (Hβ d, 17.2)	8αα	5, 9, 9a, 10a, 12	5, 6	6, 8aα
9	197.7 (C)					
9a	105.9 (C)					
10a	88.1 (C)					
11	21.0 (CH ₃)	2.12 (s)	4	2, 3, 4, 4a, 9a	4, 13´	4, 11´, 13´
12	170.9 (C)					
13	53.5 (CH ₃)	3.77 (s)		12		
14	51.6 (CH ₃)	3.63 (s)		8		
OH-1		11.94 (s)		1, 2, 3, 9, 9a	7'a, 11'	
OH-5		5.05 (br d, 4.8)	5		5	

^aPosition of carbon atom. ^b[D₆]Acetone, 300/75.5 MHz. ^c[D₆]Acetone, 500/75.5 MHz. ^dNumbers refer to proton resonances. ^e Numbers refer to carbon resonances.

Supporting information – General Experimental

All NMR spectra were recorded on Bruker Avance 500 DRX or 300 DPX spectrometers in [D₆]acetone or CDCl₃. Spectra were referenced to residual solvent signals. UV and IR spectra were obtained employing Perkin-Elmer Lambda 40 and Perkin-Elmer Spectrum BX instruments, respectively. HRESIMS were recorded on Bruker Daltonics' micrOTOF-Q instrument. Optical rotation was measured on a Jasco DIP 140 polarimeter.

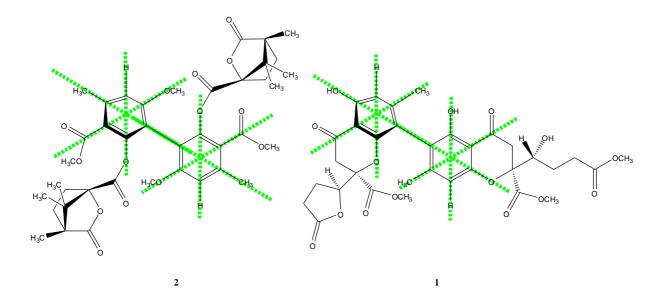
Circular Dichroism Spectroscopic Measurements. CD spectra of compound **1** and **2** were recorded at room temperature on a Jasco J-810 spectrophotometer. Samples were measured in 1 cm-cuvettes at concentration of 0.3 mmol L⁻¹.

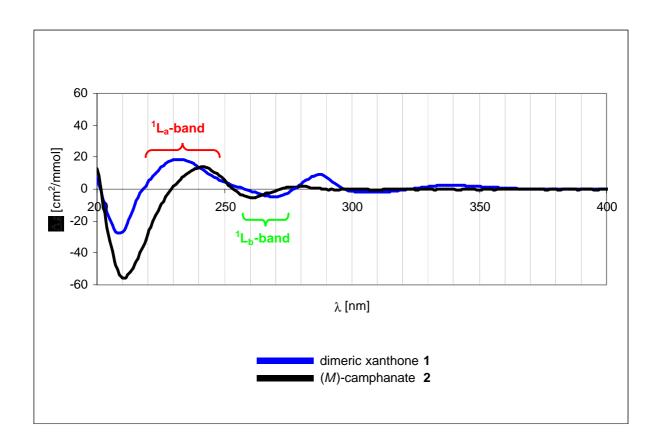
Modified Mosher Derivatization

Preparation of the acid chlorides of (\it{R} **)- and (** \it{S} **)-MPA.** Oxalyl chloride (103.7 μ L, 1.2 mmol) was added to a solution of the corresponding MPA (20 mg, 0.12 mmol) and DMF (0.94 μ L, 0.012 mmol) in hexane at room temperature. After one day, the solvent was vacuum-baked to give 100% of the product MPA-Cl (22.2 mg, 0.12 mmol).

Preparation of the (*R***)- and (***S***)- MPA esters.** The corresponding MPA-Cl (4.27 mg, 23.15 μmol) was dissolved in 5 mL of CH_2Cl_2 and added to a solution of compound **1** (3.1 mg/ 4.63 μmol for *R*-derivatization; 2.4 mg/ 3.6 μmol for *S*-derivatization), Et_3N (7.70 μL, 55.56 μmol) and DMAP (0.57 mg, 4.63 μmol) as catalyst. After 20 min reaction time the obtained products were evaporated under vacuum and further purified by HPLC using a Merck-Hitachi system consisting of a L-6200 A pump, a L-4500 A photodiode array detector and a D-6000 A interface. The separation was performed with a RP18 column (Macherey-Nagel Nucleodur Sphinx RP, 5 μm, 250 x 4.6 mm) and a mobile phase (1.2 mL/min) consisting of MeCN/H₂O 64/36. The main peaks in the

chromatograms revealed the pure MPA esters (2 mg = 52.8 % of *R*-MPA ester and 1.6 mg = 54.6 % of *S*-MPA ester, respectively).


Molecular Modeling. All models were calculated employing conformation search (Boltzman jump) and a standard force field as implemented in the Cerius2 4.0 (MSI) molecular modeling software package. Models were further refined with 1500 iterations of minimization. Calculations were performed using a Silicon Graphics O2 workstation (Irix 6.5.6).


Determination of Potential Cancer Chemopreventive Activities. Homogenates of H4IIE rat hepatoma cells induced for 39 h with the CYP1A inducer β-naphthoflavone (β-NF) at a concentration of 10 μM were used as an enzyme source to measure CYP1A activity. The rate of time-dependent dealkylation of 3-cyano-7-ethoxycoumarin (CEC) to 3-cyano-7-hydroxycoumarin (CHC) was determined fluorimetrically in 96-well plates for 45 min at 37°C using a SpectraMax Gemini XS fluorescence reader (Molecular Devices, excitation 409 nm, emission 451 nm, cutoff 435 nm). Activity of solvent control C: 36 ± 7 pmol min⁻¹ mg⁻¹ of protein (n=3-4). Means significantly different from control (*P < 0.01, **P < 0.001) using ANOVA with Holm-Sidak test for multiple comparison with n=3-4. Inhibition constants were generated from Lineweaver-Burk-, Dixon- and Cornish-Bowden plots of the results of kinetic experiments with 2.5 μM, 5 μM and 10 μM CEC, respectively, as a substrate. The IC₅₀ value of α-naphthoflavone (a-NF), a known CYP1A inhibitor employed as a positive control, was 0.005 ± 0.001 μM (n=4).

For the detection of phase 2 enzyme inducers, QR activity was measured in cultured Hepa 1c1c7 murine hepatoma cells (2 x 10^4 cells mL⁻¹) after a 48 h induction period by the NADPH-dependent menadiol-mediated reduction of MTT [3-(4,5-dimethylthiazo-2-yl)-2,5-diphenyltetrazolium bromide] to a blue formazan as described previously. ^[8] Induction of QR activity was calculated from the ratio of specific enzyme activities of compound-treated cells in comparison with a solvent control, and CD values (concentration required to double the specific QR activity in μ M) were generated. Sulforaphane, an isothiocyanate from broccoli, was used as a positive control with a CD value of 0.19 \pm 0.05 μ M (n=3). Specific activities of untreated controls were 26 \pm 3 nmol min⁻¹ mg⁻¹ protein (n=4).

Figure S1. Important ¹H, ¹H-COSY and ¹H, ¹³C long range (HMBC) correlations of compound **1**.

Figure S2. CD spectra of compound **1** and the reference (M)-orsellinic acid camphanate (**2**) in MeCN with sector rule for the ${}^{1}L_{b}$ -Cotton effect (drawn through the ring carbons) ${}^{[10,11]}$ for the benzene chromophores.

Figure S3. Selective gradient NOEs (purple arrows) depicted in autonomous 3D models (Cerius2) of both monomeric sub-units disconnected at the biphenyl axis (brownish bond).

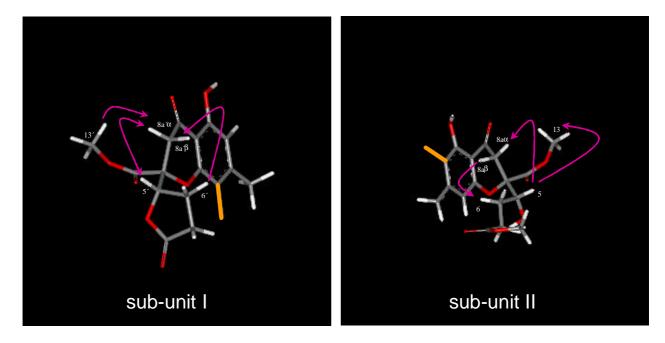


Figure S4. Selective gradient NOEs (arrows) between the two sub-units of 1.

Figure S 5. Deduction of the absolute configuration at C-5 using modified Mosher's method with ? d^{RS} -values of MPA esters of compound **1**.

Figure S6. Proposed biosynthesis for compound 1.

Figure S7. Structures of fungal metabolites related to 1.

ergochrome F unit^[15]:

ergoxanthin^[15]:

xanthoquinodin A3 [14]:

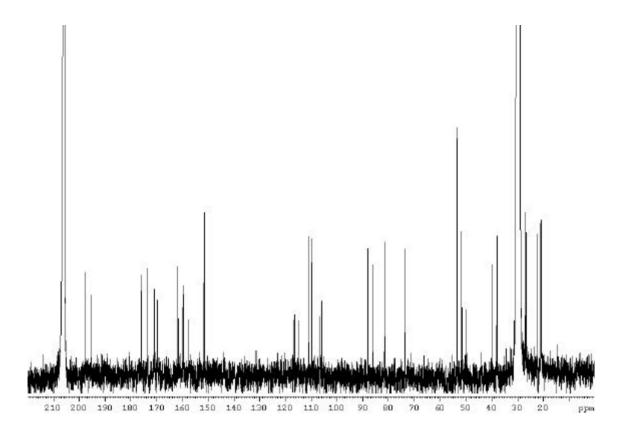
xanthoquinodin B3 [14]:

chaetomanone^[16]:

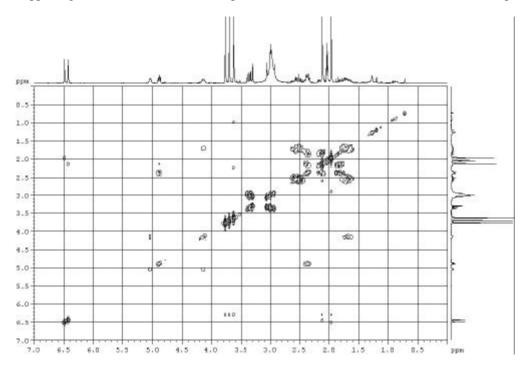
lachnone 3, 4 and 5^[17]:

$$R_1$$
 R_2
 R_3
 R_4
 R_4

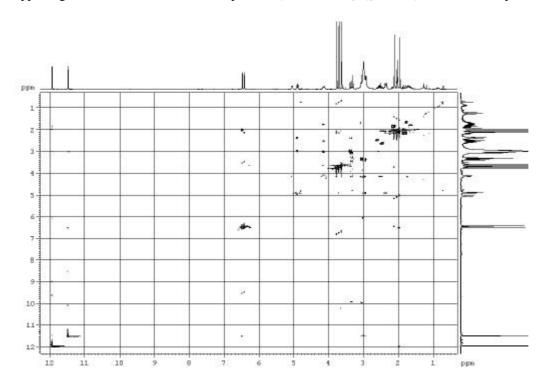
3: $R_1 = R_2 = H$


4: $R_1 = OH$; $R_2 = H$

5: $R_1 = -CH_2COCH_3$; $R_2 = OH$


Supporting information – ¹H NMR spectrum (300 MHz in [D₆]acetone) of the new compound 1.

Supporting information – 13 C NMR spectrum (75 MHz in [D₆]acetone) of the new compound 1.


Supporting information – ¹H, ¹H-COSY spectrum (300 MHz in [D₆]acetone) of the new compound 1.

Supporting information $-{}^{1}H$, ${}^{13}C$ -HMBC spectrum (300 MHz in [D₆]acetone) of the new compound 1.

Supporting information –¹H, ¹H-NOESY spectrum (300 MHz in [D₆]acetone) of the new compound 1.

Table S2. ¹H NMR spectral data for sub-unit II of (R) and (S)-MPA products of **1** with calculated ? d^{RS} values.

no. ^a	(R)-MPA product d^{-1} H ppm (mult.) b	(S)-MPA product d^{1} H ppm (mult.) b	? d ^{RS}
4	6.27 (s)	6.40 (s)	-0.13
5	5.61 (d)	5.59 (d)	+0.02
6	1.77 (m)	1.76 (m)	+0.01
7	2.40 (m)	1.99 (m)	+0.41
8aa	2.75 (d)	3.04 (s)	-0.29
8аß	2.47 (d)	3.04 (s)	-0.57
11	2.11 (s)	2.12 (s)	-0.01
13	3.74 (s)	3.80 (s)	-0.06
14	3.70 (s)	3.63 (s)	+0.07
OH-1	11.66 (s)	11.76 (s)	-0.10

^a Position of proton atom. ^b CDCl₃, 300/75.5 MHz.